بازگشت   پی سی سیتی > مقالات و مباحث علمی > مقالات و موضوعات علمی

مقالات و موضوعات علمی در این تالار مقالات و مطالب علمی قرار داده خواهد شد توجه شود که مقالات علمی و دانشگاهی با اخبار علمی تفاوت دارد و بخش مربوطه ی اخبار علمی به صورت جداگانه ایجاد شده است

پاسخ
 
ابزارهای موضوع نحوه نمایش
  #1  
قدیمی 09-15-2007
SonBol آواتار ها
SonBol SonBol آنلاین نیست.
معاونت

 
تاریخ عضویت: Aug 2007
محل سکونت: یه غربت پر خاطره
نوشته ها: 11,775
سپاسها: : 521

1,688 سپاس در 686 نوشته ایشان در یکماه اخیر
پیش فرض لیزر

فکر اختراع لیزر اولین بارتوسط دانشمندان در دهه ی 1950 جان گرفت . این ایده رشد نمود تا این که منجر به اختراع یک وسیله لیزری به نام مسر شد. این وسیله برای گسترش و انتشار امواج میکرو مورد بهره برداری قرار گرفت. به همین دلیل لیزر های اولیه را مسر های بصری نام نهادند.

در سال 1960 دانشمند آمریکایی به نام تئودور.اچ.میمان اولین لیزر را ساخت.این لیزر از طریق تشعشع معمولی نور در یک میله ی مرکب از رنگ های قرمز ساخته شد.

در سال بعد یک نوع لیزر گازی اختراع شد و اولین لیزر مایع نیز در سال 1966 ابداع شد. پس از آن تحقیقات در زمینه توسعه لیزر تداوم یافت.
لیزر بر اساس یک اصل علمی شناخته شد که عبارت بود از : اتم های یک ماده با هر نوع انرژی که به ماده وارد شود برانگیخته و تحریک می شوند و سپس فوتون ها که عبارتند از انفجار های ریز نور از خود رها می کنند. آن ها اتم های دیگر را نیز وادار به این کار کرده و تمام انرژی از طریق یک آینه موج می زند. این آینه در قسمت جلویی لیزر و به طور ثابت قرار گرفته و به عنوان یک پرتو افکن مورد استفاده قرار می گیرد.

اشعه ی لیزری روشن ترین نوع نور است و شدت روشنائیش به قدری زیاد است که می تواند یک حفره فولادی را آتش بزند و می تواند به طرف یک رفلکتور لیزری که در سال 1969 توسط متخصصین علم نجوم بر روی ماه گذاشته شد هدایت شود. لیزرها در صنعت، پزشکی، ارتباطات و غیره موارد استفاده بسیار دارند.

ویرایش توسط رزیتا : 02-24-2011 در ساعت 04:39 PM دلیل: ویرایش
پاسخ با نقل قول
جای تبلیغات شما اینجا خالیست با ما تماس بگیرید




  #2  
قدیمی 12-17-2009
تاري تاري آنلاین نیست.
کاربر فعال
 
تاریخ عضویت: Aug 2009
محل سکونت: تهران
نوشته ها: 1,296
سپاسها: : 0

33 سپاس در 31 نوشته ایشان در یکماه اخیر
Arrow ليزر و كاربردهاي آن

ليزر مخفف عبارت light amplification by stimulated emission of radiation می باشد و به معنای تقويت نور توسط تشعشع تحريک شده است.اولين ليزر جهان توسط تئودور مايمن اختراع گرديد و از ياقوت در ان استفاده شده بود. در سال 1962 پروفسورعلی جوان اولين ليزر گازی را به جهانيان معرفی نمود و بعدها نوع سوم وچهارم ليزرها که ليزرهای مايع و نيمه رسانا بودند اختراع شدند.در سال 1967 فرانسويان توسط اشعه ليزر ايستگاههای زمينی شان دو ماهواره خود را در فضا تعقيب کردند, بدين ترتيب ليزر بسيار کار بردی به نظر آمد.نوری که توسط ليزر گسيل می گردد در يک سو و بسيار پر انرژی و درخشنده است که قدرت نفوذ بالايی نيز دارد بطوريکه در الماس فرو ميرود . امروزه استفاده از ليزر در صنعت بعنوان جوش اورنده فلزات و بعنوان چاقوی جراحی بدون درد در پزشکی بسيار متداول است.

ليزرها سه قسمت اصلی دارند:
۱-پمپ انرژی يا چشمه انرژی: که ممکن است اين پمپ اپتيکی يا شيميايی و ياحتی يک ليزر ديگر باشد
۲- ماده پايه وزفعال که نام گذاری ليزر بواسطه ماده فعال صورت ميگيرد
۳- مشدد کننده اپتيکی : شامل دو اينه بازتابنده کلی و جزئی می باشد

طرز کار يک ليزر ياقوتی:
پمپ انرژی در اين ليزر از نوع اپتيکی ميباشد ويک لامپ مارپيچی تخليه است(flash tube) که بدور کريستال ياقوت مدادی شکلی پيچيده شده(ruby) کريستال ياقوت ناخالص است و ماده فعال ان اکسيد برم و ماده پايه ان اکسيد الومينم است.
بعد از فعال شدن اين پمپ انرژی کريستال يا قوت نور باران می شودو بعضی از اتمها رادر اثرجذب القايی-stimulated absorption برانگيخته کرده وبه ترازهای بالاتر می برد.



پديده جذب القايی: اتم برانگيخته = اتم+فوتون



با ادامه تشعشع پمپ تعداد اتمهای برانگيخته بيشتر از اتمهای با انرژی کم ميشود به اصطلاح وارونی جمعيت رخ می دهد طبق قانون جذب و صدور انرژی پلانک اتمهای برانگيخته توان نگهداری انرژی زيادتر را نداشته وبه تراز با انرژی کم بر ميگردند وانرژی اضافی را به صورت فوتون ازاد می کنند که به اين فرايند گسيل خودبخودی گفته می شود ولی از انجايی که پمپ اپتيکی
مرتب به اتمها فوتون می تاباند پديده ديگري زودتر اتفاق می افتد که به ان گسيل القايی-stimulated emission گفته می شود .وقتی يک فوتون به اتم برانگيخته بتابد ان را تحريک کرده و زودتر به حالت پايه خود بر می گرداند.


گسيل القايی: اتم+دو فوتون = اتم برانگيخته+ فوتون

اين فوتونها دوباره بعضی از اتمها را بر انگيخته ميکنند و واکنش زنجير وار تکرار می شود.
بخشی از نور ها درون کريستال به حرکت در می ايند که توسط مشددهای اپتيکی درون کريستال برگرداننده می شوند واين نورها در همان راستای نور اوليه هستد بتدرج با افزايش شدت نور لحظه ای می رسد که نور ليزر از جفتگر خروجی با روشنايی زياد بطور مستقيم خارج می شود .

ليزر CO2
ليزرهاي گازي نوع خاصي از ليزر است كه در آن گازي داخل يك لوله ي شفاف مثل لامپ مهتابي مي رود. عبور جريان از اين لوله باعث رفت و آمد ِفوتون مي شود. اولين نوع ِاين ليزرها هليم نئون بود. يعني همين ليزرهاي خانگي و مدارس. اين ليزر ِايمن توسط يك ايراني در مؤسسه ي بل به نام دكتر علي جوان اختراع شد. نوع ديگر ليزر ليزر CO2 است. البته در محفظه ي آن هليوم و مقداري نيتروژن هم هست. كاز نيتروژن انرژي ِالكترودها را ذخيره مي كند. پس از برخورد مولكولهاي نيتروژن به مولكول CO2 اين انرژي انتقال مي يابد. مولكولهاي CO2 برانگيخته مي شوند. گاز هليوم به انتقال ِانرژي كمك مي كند. همچنين كمك مي كند تا مولكولهاي دي اكسيد كربن زودتر به ترازهاي انرژي عادي يا حالت عادي خود برگردند. اين ليزرها بازده خوبي دارند.

كاربردهاي ليزر :

تمام نگاري:
تمام نگاري ( هولوگرافي) يك تكنيك انقلابي است كه عكسبرداري سه بعدي (يعني كامل ) از يك جسم و يا يك صحنه را ممكن مي كند. اين تكنيك در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر كرده توان تفكيك ميكروسكوپ الكتروني پيشنهاد شد) و به صورت يك پيشنهاد عملي در آمدو اما قابليت واقعي اين تكنيك پس از اختراع ليزر نشان داده شد.
اساس تمام نگاري به اين صورت است كه باريكه ليزر بوسيله آينه كه قسمتي از نور را عبور مي دهد به دو باريكه ( بازتابيده و عبوري) تقسيم مي شوند. باريكه بازتابيده مستقيما به صفحه حساس به نور برخورد مي كند در حالي كه باريكه عبوري جسمي را كه بايد تمام نگاري شود روشن مي كند. به اين ترتيب قسمتي از نوري كه از جسم پراكنده شده هم روي صفحه حساس ( فيلم ) مي افتد. به علت همدوس بودن باريكه ها يك نقش تداخلي از تركيب دو باريكه روي صفحه تشكيل مي شود حالا اگر اين فيلم ظاهر شود و تحت بزرگنمايي كافي بررسي شود مي توان اين فريزهاي تداخلي را مشاهده كرد. فاصله بين دو فريز تاريك متوالي معمولا حدود 1 ميكرومتر است. اين نقش تداخلي پيچيده است و هنگامي كه صفحه را به وسيله چشم بررسي مي كنيم به نظر نمي رسد كه حامل تصوير مشابه با جسم اوليه باشد اما اين فريزهاي تداخلي در واقع حامل ضبط كاملي از جسم اوليه است.
حال فرض كنيد كه صفحه ظاهر شده را دوباره به محلي كه در معرض نور قرار داشت بازگردانيم و جسم تحت مطالعه را برداربم باريكه بازتابيده اكنون با فريزهاي روي صفحه برهمكنش مي كنند و دوباره در پشت صفحه يك باريكه پراشيده ايجاد مي كندبنابراين ناظري كه به صفحه نگاه مي كند جسم را در پشت صفحه مي بيند طوري كه انگار هنوز هم جسم در آنجاست.
يكي از جالبترين خصوصيات تمام نگاري اين است كه جسم بازسازي شده رفتار سه بعدي نشان مي دهد بنابراين با حركت دادن چشم از محل تماشا مي توان طرف ديگر جسم را مشاهده كرد. توجه كنيد كه براي ضبط تمام نگار بايد سه شرط اصلي را براورد: الف) درجه همدوسي نور ليزر بايد به اندازه كافي باشد تا فريزهاي تداخلي در روي صفحه تشكيل شود. ب) وضعيت نسبي جسم - صفحه و باريكه ليزر نبايد در هنگام تاباندن نور به صفحه كه حدود چند ثانيه طول مي شكد تغيير كند در واقع تغيير محل نسبي بايد كمتر از نصف طول موج ليزر باشد تا از درهم شدن نقش تداخلي جلوگيري كند. ج) قدرت تفكيك صفحه عكاسي بايد به اندازه كافي زياد باشد تا بتواند فريزهاي تداخلي را ضبط كند.
تمام نگاري به عنوان يك تكنيك ضبط و بازسازي تصوير سه بعدي بيشترين موفقيت را تاكنون در كاربردهاي هنري داشته است تا در كاربردهاي علمي . اما بر اساس تمام نگاري از يك تكنيك تداخل سنجي تمام نگاشتي در كاربردهاي علمي به عنوان وسيله اي براي ضبط و اندازه گيري واكنشها و ارتعاشات اجسام سه بعدي استفاده شده است.

اندازه گيري و بازرسي
خصوصيات جهتمندي درخشايي و تكفامي ليزر باعث كاربردهاي مفيد زيادي براي اندازه گيري و بازرسي در رشته مهندسي سازه و فرايندهاي صنعتي كنترل ابزار ماشيني شده است. در اين بخش تعيين فاصله بين دو نقطه و بررسي آلودگي را نيز مد نظر قرار مي دهيم
يكي از معمولترين استفاده هاي صنعتي ليزر هم محور كردن است. براي اينكه يك خط مرجع مستقيم براي هم محور كردن ماشين آلات در ساخت هواپيما و نيز در مهندسي سازه براي ساخت بناها پلها و يا تونلها داشته باشيم استفاده از جهتمندي ليزر سودمند است. در اين زمينه ليزر به خوبي جاي وسايل نوري مانند كليماتور و تلسكوپ را گرفته است. معمولا از يك ليزر هليم - نئون با توان كم استفاده مي شود و هم محور كردن عموما به كمك آشكارسازهاي حالت جامد به شكل ربع دايره اي انجام مي شود. محل برخورد باريكه ليزر روي گيرنده با مقدار جريان نوري روي هر ربع دايره معين مي شود. در نتيجه هم محور شدن بستگي به يك اندازه گيري الكتريكي دارد و در نتيجه نيازي به قضاوت بصري آزمايشگر نيست. در عمل دقت رديف شدن از حدود 5µm تا حدود 25µm به دست آمده است.
از ليزر براي اندازه گيري مسافت هم استفاده شده است. روش استفاده از ليزر بستگي به بزرگي طول مورد نظر دارد . براي مسافتهاي كوتاه تا 50 متر روشهاي تداخل سنجي به كار گرفته مي شوند كه در آن ها از يك ليزر هليم - نئون پايدار شده فركانسي به عنوان منبع نور استفاده مي شود. براي مسافتهاي متوسط تا حدود 1 كيلومتر روشهاي تله متري شامل مدوله سازي دامنه به كار گرفته مي شود. براي مسافت هاي طولاني تر مي توان زمان در راه بودن تپ نوري را كه از ليزر گسيل شده است و از جسمي بازتابيده مي شود اندازه گيري كرد.
در اندازه گيري تداخل سنجي مسافت از تداخل سنج مايكلسون استفاده مي شود. باريكه ليزر به وسيله يك تقسيم كننده نور به يك باريكه اندازه گيري و يك باريكه مرجع تقسيم مي شود باريكه مرجع با يك آينه ثابت بازتابيده مي شود در حالي كه باريكه اندازه گيري از آينه اي كه به جسم مورد اندازه گيري متصل شده است بازتاب پيدا مي كند. سپس دو باريكه بازتابيده مجددا با يكديگر تركيب مي شوند به طوري كه با هم تداخل مي كنند و دامنه تركيبي آن ها با يك آشكار ساز اندازه گيري مي شود. هنگامي كه محل جسم در جهت باريكه به اندازه نصف طول موج ليزر تغيير كند سيگنال تداخل از يك ماكزيموم به يك مينيموم مي رسد و سپس دوباره ماكزيموم مي شود. بنابراين يك سيستم الكترونيكي شمارش فريزها مي تواند اطلاعات مربوط به جابجايي جسم را به دست دهد. اين روش اندازه گيري معمولا در كارگاههاي ماشين تراش دقيق مورد استفاده قرار مي گيرد و امكان اندازه گيري طول با دقت يك در ميليون را مي دهد. بايد يادآوري كرد كه در اين روش فقط مي توان فاصله را نسبت به يك مبدا اندازه گيري كرد. برتري اين روش در سرعت دقت و انطباق با سيستم هاي كنترل خودكار است.
براي فاصله هاي بزرگتر از روش تله متري مدوله سازي دامنه استفاده مي شود و فاصله روي اختلاف فاز بين دو باريكه ليزر مدوله مي شود و فاصله از روي اختلاف فار بين دو باريكه گسيل شده و بازتابيده معين مي شود. باز هم دقت يك در ميليون است. از اين روش در مساحي زمين و نقشه كشي استفاده مي شود. براي فواصل طولاني تر از 1 كيلومتر فاصله با اندازه گيري زمان پرواز يك تپ كوتاه ليزري گسيل شده از ليزر ياقوت و يا ليزر CO2 انجام مي گيرد. اين كاربردها اغلب اهميت نظامي دارند و در بخشي جداگانه بحث خواهد شد كاربردهاي غير نظامي مانند اندازه گيري فاصله بين ماه و زمين با دقتي حدود 20 سانتي متر و تعيين برد ماهواره ها هم قابل ذكر است.
درجه بالاي تكفامي ليزر امكان استفاده از آن را براي اندازه گيري سرعت مايعات و جامدات به روش سرعت سنجي دوپلري فراهم مي سازد. در مورد مايعات مي توان باريكه ليزر را به مايع تابانده و سپس نور پراكنده شده از آن را بررسي كرد. چون مايع روان است فركانس نور پراكنده شده به خاطر اثر دوپلر كمي با فركانس نور فرودي تفاوت دارد. اين تغيير فركانس متناسب با سرعت مايع است. بنابراين با مشاهده سيگنال زنش بين دو پرتو نور پراكنده شده و نور فرودي در يك آشكار ساز مي توان سرعت مايع را اندازه گيري بدون تماس انجام مي شود. و نيز به خاطر تكفامي بالاي نور ليزر براي برد وسيعي از سرعتها خيلي دقيق است.
يكي از سرعت سنجهاي خاص ليزر اندازه گيري سرعت زاويه اي است. وسيله اي كه براي اين منظور طراحي شده است ژيروسكوپ ليزريناميده مي شود و شامل ليزري است كه كاواك آن به شكل حلقه اي است كه از سه آينه به جاي دو آينه معمول استفاده مي شود. اين ليزر مي تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامين كند. فركانسهاي تشديدي مربوط به هر دو جهت انتشار را مي توان با استفاده از اين شرط كه طول تشديد كننده ( حلقه اي ) برابر مضرب صحيحي از طول موج باشد به دست آورد. اگر حلقه در حال چرخش باشد در مدت زماني كه لازم است نور يك دور كامل بزند زاويه آينه هاي تشديد كننده به اندازه يك مقدار خيلي كوچك ولي محدود حركت خواهد كرد. طول موثر براي باريكه اي در همان جهت چرخش تشديد كننده مي چرخد كمي بيشتر از باريكه اي است كه در جهت عكس مي چرخد. در نتيجه فركانس هاي دو باريكه اي كه در خلاف جهت يكديگر مي چرخند كمي تفاوت دارد و اختلاف اين فركانسهاي متناسب با سرعت زاويه اي تشديد كننده است . با ايجاد تپش بين دو باريكه مي توان سرعت زاويه اي را اندازه گيري كرد. ژيروسكوپ ليزري امكان اندازه گيري با دقتي را فراهم مي كند كه قابل مقايسه با دقت پيچيده ترين و گرانترين ژيروسكوپ هاي معمولي است.
كاربرد مصرفي ديگر و يا به عبارت بهتر كاربرد مصرفي واقعي عبارت از ديسك ويدئويي و ديسك صوتي است. يك ديسك ويدئو حامل يك برنامه ويدئويي ضبط شده است كه مي توان آن را بر روي دستگاه تلويزيون معمولي نمايش داد. سازندگان ديسك ويدئويي اطلاعات را با استفاده از يك سابنده روي آن ضبط مي كنند كه اين اطلاعات به وسيله ليزر خوانده مي شود. يك روش معمول ضبط شامل برشهاي شياري با طول ها و فاصله هاي مختلف است عمق اين شيارها 4/1 طول موج ليزري است كه از آن در فرايند خواندن استفاده مي شود. در موقع خواندن باريكه ليزر طوري كانوني مي شود كه فقط بر روي يك شيار بيفتد. هنگامي كه شيار در مسير لكه باريكه ليزر واقغ شود بازتاب به خاطر تداخل ويرانگر بين نور بازتابيده از ديوارهاي شيار و به آن كاهش پيدا مي كند. به عكس نبودن شيار باعث يك بازتاب قوي مي شود. بدين طريق مي توان اطلاعات تلويزيوني را به صورت رقمي ضبط كرد.
كاربرد ديگر ليزرها نوشتن و خواندن اطلاعات در حافظه نوري در كامپيوترهاست لطف اي حافظه نوري هم در توان دسترسي به چگالي اطلاعات حدود مرتبه طول موج است. تكنيك ضبط عبارت است از ايجاد سوراخ هاي كوچكي در يك ماده مات يا نوعي تغيير خصوصيت عبور و بازتاب ماده زير لايه كه با استفاده از ليزرهاي با توان كافي حاصل مي شود. و حتي مي تواند فيلم عكاسي باشد. اما هيچ يك از اين زير لايه ها را نمي توان پاك كرد. حلقه هاي قابل پاك كردن بر اساس گرما مغناطيسي فروالكتريك و فوتوكروميك ساخته شده اند. همچنين حافظه هاي نوري با استفاده از تكنيك تمام نگاري نيز طراحي شده اند. نتيجتا اگر چه از لحاظ فني امكان ساخت حافظه هاي نوري به وجود آمده است ولي ارزش اقتصادي آن ها هنوز جاي بحث دارد.
آخرين كاربردي كه در اين بخش اشاره مي كنيم گرافيك ليزري است. در اين تكنيك ابتدا باريكه ليزر بوسيله يك سيستم مناسب روبشگر بر روي يك صفحه حساس به نور كانوني مي شود و در حالي كه شدت ليزر به طور همزمان با روبش از نظر دامنه مدوله مي شود به طوري كه بتوان آن را بوسيله كامپيوتر توليد كرد.( مانند سيستم هاي چاپ كامپيوتري بدون تماس ) و يا آنها را به صورت سيگنال الكتريكي از يك ايستگاه دور دريافت كرد( مانند پست تصويري). در مورد اخير مي توان سيگنال را به وسيله يك يك سيستم خواننده مناسب با كمك ليزر توليد كرد. وسيله خواندن در ايستگاه دور شامل ليزر با توان كم است كه باريكه كانوني شده آن صفحه اي را كه بايد خوانده شود مي روبد. يك آشكارساز نوري باريكه پراكنده از نواحي تاريك و روشن روي صفحه را كنترل مي كند و آن را به سيگنال الكتريكي تبديل مي كند. سيستم هاي ليزري رونوشت اكنون به طور وسيعي توسط بسياري از ناشران روزنامه ها براي انتقال رونوشت صفحات روزنامه به كار برده مي شود.


ارتباط نوري:
استفاده از باريكه ليزر براي ارتباط در جو به خاطر دو مزيت مهم اشتياق زيادي برانگيخت :

الف) اولين علت دسترسي به پهناي نوار نوساني بزرگ ليزر است. زيرا مقدار اطلاعات قابل انتقال روي يك موج حامل متناسب با پهناي نوار آن است. فركانس موج حامل از ناحيه ميكروموج بخ ناحيه نور مرئي به اندازه 104 برابر افزايش مي يابد و در نتيجه امكان استفاده از يك پهناي بزرگتر را به ما مي دهد.

ب) علت دوم طول موج كوتاه تابش است. چون طول موج ليزر نوعا حدود 104 مرتبه كوچكتر از امواج ميكرو موج است با قطر روزنه يكسان D واگرايي امواج نوري به اندازه 104 مرتبه نسبت به واگرايي امواج ميكرو موج كوچكتر است. بنابراين براي دستيابي به اين واگرايي آنتن يك سيستم اپتيكي مي تواند به مراتب كوچكتر باشد. اما اين دو امتياز مهم با اين واقعيت خنثي مي شوند كه باريكه نوري تحت شرايط ديد ضعيف در جو به شدت تضعيف مي شود. در نتيجه استفاده از ليزرها در ارتباطات فضاي باز ( هدايت نشده ) فقط در مورد اين موارد توسعه يافته اند :

الف) ارتباطات فضايي بين دو ماهواره و يا بين يك ماهواره و يك ايستگاه زميني كه در يك شرايط جوي مطلوب قرار گرفته است. ليزرهايي كه در اين مورد استفاده مي شوند عبارتند از :

Nd:YAG ( با آهنگ انتقال 109 بيت در ثانيه ) و يا CO2 با آهنگ انتقال 3*108 بيت در ثانيه ). گرچه CO2 نسبت به Nd: YAG داراي بازدهي بالاتري است و لي داراي اين اشكال است كه نياز به سيستم آشكارسازي پيچيده تري دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.

ب) ارتباطات بين دو نقطه در يك مسافت كوتاه مثلا انتقال اطلاعات درون يك ساختمان. براي اين منظور از ليزرهاي نيمرسانا استفاده مي شود.

اما زمينه اصلي مورد توجه در ارتباطات نوري مبتني بر انتقال از طريق تارهاي نوري است. انتقال هدايت شده نور در تارهاي نوري پديده اي است كه از سالها پيش شناخته شده است اما تارهاي نوري اوليه فقط در مسافت هاي خيلي كوتاه مورد استفاده قرار مي گرفتند مثلا كاربرد متعارف آن ها در وسايل پزشكي براي اندوسكوپي است. بنابراين در اواخر سال 1960 تضعيف در بهترين شيشه هاي نوري در حدود 1000 دسي بل بر كيلومتر بود. از آن زمان پيشرفت تكنيكي شيشه و كوارتز باعث تغيير شگفت انگيز در اين عدد شده است به طوري كه اين تضعيف براي كوارتز به 5/0 دسي بل بر كيلومتر رسيده است. اين تضعيف فوق العاده كوچك آينده مهمي را براي كاربرد تارهاي نوري در ارتباطات راه دور نويد مي دهد

سيستم ارتباطات تارهاي نوري نوعا شامل يك چشمه نور يك جفت كننده نوري مناسب براي تزريق نور به تارها و درانتها يك فوتوديود است كه باز هم به تار متصل شده است. تكرار كننده شامل يك گيرنده و يك گسيلنده جديد است. چشمه نور سيستم اغلب ليزرهاي نيمرساناي نا هم پيوندي دوگانه است. اخيرا طول عمر اين ليزرها تا حدود 106 ساعت رسيده است. گرچه تا كنون اغلب از ليزر گاليم ارسنيد GaAs استفاده شده است ولي روش بهتر استفاده از ليزرهاي نا هم پيوندي است كه در آنها لايه فعال تركيبي از آلياژ چهارگانه به صورت In1-x Gax Asy P1-y است. در اين حالت لبه هاي P ,n پيوندگاه از تركيب دوگانه InP تشكيل شده است و با استفاده از تركيب y=2v2x مي توان ترتيبي داد كه چهار آلياژ چهارگانه شبكه اي كه با InP جور شود با انتخاب صحيح x طول موج تابش را طوري تنظيم كرد كه در اطراف µm 3/1 و يا اطراف 6/1 µm واقع شود كه به ترتيب مربوط به دو مينيموم جذب در تار كوارتز هستند. بسته به قطر d هسته مركزي تار ممكن است از نوع تك مدباشد براي آهنگ انتقال متداول فعلي حدود 50 مگابيت در ثانيه معمولا از تارهاي چند مدي استفاده مي شود. براي آهنگ انتقال هاي بيشتر تارهاي تك مدي مناسبتر به نظر مي رسند. گيرنده معمولا يك فوتوديود بهمني است اگر چه ممكن است از يك ديود PIN و يك ديود تقويت كننده حالت جامد مناسب نيز استفاده كرد.

ليزر در فيزيك و شيمي:
اختراع ليزر و تكامل آن وابسته به معلومات پايه اي است كه در درجه اول از رشته فيزيك و بعد از شيمي گرفته شده اند. بنابراين طبيعي است كه استفاده از ليزر در فيزيك و شيمي از اولين كاربردهاي ليزر باشند
رشته ديگري كه در آن ليزر نه تنها امكانات موجود را افزايش داده بلكه مفاهيم كاملا جديدي را عرضه كرده است طيف نمايي است. اكنون با بعضي از ليزرها مي توان پهناي خط نوساني را تا چند ده كيلوهرتز باريك كرد ( هم در ناحيه مرئي و هم در ناحيه فروسرخ ) و با اين كار اندازه گيري هاي مربوط به طيف نمايي با توان تفكيك چند مرتبه بزرگي ( 3 تا 6) بالاتر از روش هاي معمولي طيف نمايي امكان پذير مي شوند. ليزر همچنين باعث ابداع رشته جديد طيف نمايي غير خطي شد كه در آن تفكيك طيف نمايي خيلي بالاتر از حدي است كه معمولا با اثرهاي پهن شدگي دوپلر اعمال مي شود. اين عمل منجر به بررسيهاي دقيقتري از خصوصيات ماده شده است.
در زمينه شيمي از ليزر هم براي تشخيص و هم براي ايجاد تغييرات شيميايي برگشت ناپذير استفاده شده است. ( فوتو شيمي ليزري) به ويژه در فون تشخيص بايد از روش هاي (پراكندگي تشديدي رامان ) و ( پراكندگي پاد استوكس همدوس رامان ) (CARS) نام ببريم. به وسيله اين روشها مي توان اطلاعات قابل ملاحظه اي درباره خصوصيات مولكولهاي چند اتمي به دست آورد ( يعني فركانس ارتعاشي فعال رامن - ثابتهاي چرخشي و ناهماهنگ بودن فركانس). روش CARS همچنين براي اندازه گيري غلظت و دماي يك نمونه مولكولي در يك ناحيه محدود از فضا به كار مي رود. از اين توانايي براي بررسي جزئيات فرايند احتراق شعله و پلاسما ( تخليه الكتريكي) بهره برداري شده است.
شايد جالبتري كاربرد شيميايي ( دست كم بالقوه ) ليزر در زيمنه فوتو شيمي باشد. اما بايد در نظر داشته باشيم به خاطر بهاي زياد فوتونهاي ليزري بهره برداري تجاري از فوتوشيمي ليزري تنها هنگامي موجه است كه ارزش محصول نهايي خيلي زياد باشد. يكي از اين موارد جداسازي ايزوتوپها است.
__________________
ميدانستم ، ميدانستم روزي خورشيد نيز خاموش خواهد شد خدايا آيا او نيز فراموش خواهد شد ....

رويايم را ببين
خداوند در آن گوشه زيز سايه سار درخت لطف خويش
با لبخند
نفسهايت را سپاس ميگويد
پس بر تو چه گذشته كه اينچنين
آرزوي مرگ ميكني ......





ببين فرصت نيست
فرصت براي بودن نيست
پس سعي كن
تا درخت را احساس كني
سبزه رابشنوي
و بوسه دادن را از گل سرخ بياموزي
تا روزي
شايد
درخت را تا مرز انار
تعقيب كني
(تاري)



ویرایش توسط تاري : 12-17-2009 در ساعت 09:00 AM
پاسخ با نقل قول
  #3  
قدیمی 12-17-2009
تاري تاري آنلاین نیست.
کاربر فعال
 
تاریخ عضویت: Aug 2009
محل سکونت: تهران
نوشته ها: 1,296
سپاسها: : 0

33 سپاس در 31 نوشته ایشان در یکماه اخیر
پیش فرض

مقدمه : ليزر نوری نامرئی در طيف نوری مادون قرمز که با چشم ديده نمي شود. اين نور دارای انرژی فراوان است و سير آن خطی بطرف نقطه هدف می باشد. نور معمولی در حقيقت دارای طيفی از نور است که با کمترين طول موج اشعه ماوراءبنفش تا بيشترين طول موج مادون قرمز می باشد ولی ليزر دارای فقط يک نوع نور با طول موج مشخصی می باشد. انرژی نور ليزر چندين هزار برابر نور طبيعی است. سومين خاصيت نور ليزر دقت و پائين بودن خاصيت انتشار نور می باشد. بطوری که نور تابيده شده از يک دستگاه ليزر مدرن در فاصله طولانی مسير مستقيم خود را حفظ کرده و شعاع نور تابيده شده در خروج از دستگاه برابر شعاع نور رسيده به هدف می باشد.


نگاه اجمالی
لیزر کشفی علمی می‌باشد که به عنوان یک تکنولوژی در زندگی مدرن جاافتاده است. لیزرها به مقدار زیاد در تولیدات صنعتی ، ارتباطات ، نقشه‌برداری و چاپ مورد استفاده قرار می‌‌گیرند. همچنین لیزر در پژوهشهای علمی و برای محدوده وسیعی از دستگاههای علمی‌ ، موارد مصرف پیدا کرده است.
برتری لیزر در این است که از منبعی برای نور و تابشهای کنترل شده ، تکفام و پرتوان تولید می‌کند. تابش لیزر ، با پهنای نوار طیفی باریک و توان تمرکزیابی شدید ، چندین برابر درخشانتر از نور خورشید است.

تاریخچه
انیشتین در 1917 میلادی نظریه گسیل القایی را بیان داشت و روابط مشهور جذب و نشر را به جهان عرضه نمود. برپایه این تئوری چهل سال بعد ، تاونز و همکاران او ، نخستین تقویت کننده گسیل القایی را با بکارگیری آمونیاک مورد آزمایش قرار داده و سیستمی‌ به اسم میزر پدید آوردند که در فرکانس 2.3x1011Hz کار می‌کرد.لیزر دارای کاربردی های صنعتی -نظامی -پزشکی و ..... می باشد:


کاربرد نظامی:
نخستین لیزر در 1960 به وسیله میمن ، با استفاده از یاقوت قرمز (ترکیبی از اکسید آلومینیوم خالص به همراه 5 درصد اکسید کروم (III)) ساخته شد و اولین لیزر گازی(He_Ne) توسط دکتر علی جوان در آزمایشگاه شرکت Bell در آمریکا ساخته شد.

در سال 1986 کشف شد که منبع لیزر می‌تواند نور همدوس تابش کند، بگونه‌ای که دامنه و فاز آن در تمامی‌ نقاط فضا ، قابل سنجش و تعیین باشد. یکی دیگر از خواص لیزر ، همگرایی بالای آن است. به دلیل این ویژگی ، تمامی انرژی پرتو لیزر تقریبا در یک فرکانس متمرکز می‌‌شود. لذا تکفامی و بالا بودن شدت آن ایده‌آل است.

نحوه ایجاد پرتو لیزر



اولین شرط ایجاد لیزر ، داشتن ماده یا محیطی است که بتواند انرژی را در خود ذخیره کند. نمونه‌هایی از این مواد عبارتند از: بلورهایی مثل یاقوت ، ایتریم ، آلومینیم گارنت ، یا گازهایی مثل و ... و مایعاتی مانند رنگهای رودآمین – 6G می‌‌باشد. انیشتین در سال 1916 نشان داد که گسیل القایی نور را می‌توان از یک اتم برانگیخته به دست آورد.

چنانچه اتم و یا مولکول در تراز بالاتر واقع شود و فوتونی با فرکانس‌ v با اتم برانگیخته وارد برهمکنش شود. بطوری که باشد، در این صورت احتمال معینی وجود خواهد داشت که اتم به تراز پایینتر بیافتد. در نتیجه ، دو فوتون حاصل می‌‌شود، فوتون القا کننده و القا شونده ، که هر دو هم‌فاز هستند.در عین حال ، اگر اتمهایی به تعداد در تراز باشند، می‌توانند با جذب فوتونهای فوق ، برانگیخته شده و به تراز انرژی برسند.

چنانچه هدف به دست آوردن تابش همدوس باشد، باید سعی شود که گردد، به عبارت دیگر ، جمعیت معکوس رخ دهد. فرآیندی که طی آن جمعیت معکوس صورت می‌‌گیرد، دمش می‌نامند. وقتی یک سیستم دو ترازی با محیط اطراف خود در حال تعادل گرمایی باشد، جمعیت تراز انرژی بالاتر کمتر از جمعیت تراز خواهد بود. با استفاده از فرایند اشباع شدن می‌توان را با مساوی گردانید. بطوری که مقدار جذب به صفر تنزل یابد.

چنانچه بتوان مقدار را بیشتر از نمود، اکثر اتمهای سیستم که به حالت برانگیخته می‌‌روند، تمایل خواهند داشت که به حالت انرژی کمتر برگردند. بدیهی است که این تمایل به وسیله کوانتای تابش فرودی تشدید می‌گردد. بدین معنی که سیستم نه تنها فوتون فرودی را جذب نمی‌کند بلکه فوتون فرودی باعث برانگیختگی سیستم برانگیخته شده که با سقوط به حالت پایینتر دو کوانتا انرژی تابشی از دست می‌دهد (فوتون مربوط به اتم برانگیخته به همراه فوتون فرودی). تمام این فرایندها تابش لیزر را به وجود می‌آورند.

قرار دادن محیط تولید لیزر در یک مشدد نوری با انتهای آینه‌ای که تابش را در محیط تولید لیزر به جلو و عقب می‌فرستد، سبب تراکم تابش سطوح بالا در تشدید کننده به وسیله ادامه گسیل القایی می‌شود. سپس تابش لیزر از طریق آینه‌ای نیمه شفاف ، از یک انتهای کاواک به بیرون گسیل می‌شود.

تفاوت پرتو لیزر با نور معمولی
پرتو لیزر دارای چهار خاصیت مهم است که عبارتند از: شدت زیاد ، مستقیم بودن ، تکفامی‌ و همدوسی. لیزرها در اشکال گوناگون وجود دارند. ممکن است تصور شود که پرتو لیزر همانند اشعه ایکس ، گاما ، ماورا بنفش(UV) و مادون قرمز (IR) ، جایگاهی معین در طیف الکترومغناطیسی را داراست، حال آنکه این پرتو می‌تواند هر کدام از فرکانسهای محدوده طیف نامبرده را در برگیرد، با این تفاوت که دارای مشخصاتی از قبیل تکفامی ، همدوسی و شدت زیاد است.

اینکه چگونه می‌توان پرتو لیزری با فرکانسهای دلخواه را تولید نمود، کار دشواری است که عملا با آن روبرو هستیم. مشکل دیرپا در تابش لیزری ، فقدان پوشش گسترده طول موجی در آن است. به دلیل اینکه لیزرها به‌خودی‌خود فاقد قابلیت تنظیم طول موج هستند، پوشش کل طیف نورانی نیاز به ابزارهای متعدد و جداگانه دارد.

نمونه هایی از لیزرهای متداول
لیزرهای متدوال مادون قرمز IR (2 _ 10μm):
لیزر مونو اکسید کربن () ، لیزر دی اکسید کربن () و بلورهای هالیدهای قلیایی و ابزار دیودی.

لیزر نئودنیوم یق () تابشی در طول موج 1.06 میکرومتر تولید کرده و لیزرهای الکساندریت یا دیودهای مخابراتی قابل تنظیم در IR نزدیک هستند. (طول موج از 2000nm تا 700nm)
>
لیزرهای محدوده نامرئی (400 _ 700nm):
لیزرهای آرگون _ کریپتون و لیزر هلیوم _ نئون، لیزرهای رنگی و لیزر تیتانیوم_یاقوت کبود.


لیزرهای محدوده ماورای بنفش (200 _ 400nm):
لیزرهای اگزایمر (لیزر هالید گاز نادر) ، نیتروژن ، لیزر رنگی با فرکانس دو برابر شده ، لیزرهای Nd:YAG با فرکانس چندین برابر شده.
طبقه بندی لیزر در حالت کلی
لیزر پیوسته کار
لیزر پالسی


چگونگی ایجاد این دو دسته تا حدود زیادی بستگی به ساختار درونی محیط تولید لیزر ، مکانیزم ایجاد لیزر و پارامترهای دیگر دارد که بررسی آنها خارج از این مقوله است. از لحاظ کاربردی ، لیزر‌های پالسی با مدت پالس 10-12 ثانیه در دسترس هستند. چنین لیزرهایی در جهت پژوهش در فرایندهایی که در گازها و مایعات ، با سرعتهای بسیار بسیار سریع رخ می‌‌دهد، بکار برده می‌شوند.

كاربردهاي نظامي
كاربردهاي نظامي ليزر هميشه عمده ترين كاربردهاي آن بوده است . فعلا مهمتريم كاربردهاي نظامي ليزر عبارت اند از: الف) فاصله يا بهاي ليزري ب) علامت گذارهاي ليزري ج) سلاح هاي هدايت انرژي
فاصله ياب ليزري مبتني بر همان اصولي است كه در رادارهاي معمولي از آن ها استفاده مي شود. يك تپ كوتاه ليزري ( معمولا با زمان 10 تا 20 نانوثانيه) به سمت هدف نشانه گيري مي شود و تپ پراكنده برگشتي بوسيله يك دريافت كننده مناسب نوري كه شامل آشكارساز نوري است ثبت مي شود. فاصله مورد نظر با اندازه گيري زمان پرواز اين تپ ليزري به دست مي ايد. مزاياي اصلي فاصله ياب ليزري را مي توان به صورت زير خلاصه كرد :
الف) وزن - قيمت و پيچيدگي آن به مراتب كمتر از رادارهاي معمولي است.
ب) توانايي اندازه گيري فاصله حتي براي هنگامي كه هدف در حال پرواز در ارتفاع بسيار كمي از سطح زمين و يا دريا باشد.
اشكال عمده اين نوع رادار در اين است كه باريكه ليزر در شرايط نامناسب رويت به شدت در جو تضعيف مي شود. فعلا چند نوع از فاصله يابهاي ليزري با بردهاي تا حدود 15 كيلومتر مورد استفاده اند :
الف) فاصله ياب هاي دستي براي استفاده سرباز پياده ( يكي از آخرين مدل هاي آن در آمريكا ساخته شده كه در جيب جا مي گيرد و وزن آن با باتري حدود 500 گرم است.
ب) سيستم هاي فاصله ياب براي استفاده در تانكها
ج) سيستم هاي فاصله ياب مناسب براي دفاع ضد هوايي
اولين ليزرهاي كه در فاصله يابي از آن ها استفاده شد ليزرهاي ياقوتي با سوئيچ Q بودند. امروزه فاصله يابهاي ليزري اغلب بر اساس ليزرهاي نئودميم با سوئيچ Q طراحي شده اند. گرچه ليزرهاي CO2 نوع TEA در بعضي موارد ( مثل فاصله ياب تانك ها ) جايگزين جالبي براي ليزرهاي نئودميم است.
دومين كاربرد نظامي ليزر در علامت گذاري است. اساس كار علامت گذاري ليزري خيلي ساده است : ليزري كه در يك مكان سوق الجيشي قرار گرفته است هدف را روشن مي سازد به خاطر روشنايي شديد نور هنگامي كه هدف به وسيله يك صافي نوري با نوار باريك مشاهده شود به صورت يك نقطه روشن به نظر خواهد رسيد. سلاح كه ممكن است بمب - موشك - و يا اسلحه منفجر شونده ديگري باشد بوسيله يك سيستم احساسگر مناسب مجهز شده است. در ساده ترين شكل اين احساسگر مي تواند يك عدسي باشد كه تصوير هدف را به يك آشكارساز نوري ربع دايره اي كه سيستم فرمان حركت سلاح را كنترل مي كند انتقال مي دهد و بنابراين مي تواند آن را به سمت هدف هدايت كند. به اين ترتيب هدف گيري با دقت بسيار زياد امكان پذير است. ( دقت هدف گيري حدود 1 متر از يك فاصله 10 كيلومتري ممكن به نظر مي رسد.) معمولا ليزر از نوع Nd: YAG است. در حالي كه ليزرهاي CO2 به خاطر پيچيدگي آشكارسازهاي نوري ( كه مستلزم استفاده در دماهاي سرمازايي است) نامناسب اند. علامت گذاري ممكن است از هواپيما - هليكوپتر و يا از زمين انجام شود. ( مثلا با استفاده از يك علامت گذار دستي ). اكنون كوشش قابل ملاحظه اي هم در آمريكا و هم در روسيه براي ساخت ليزرهايي كه به عنوان سلاحههاي هدايت انرژي به كار مي روند اختصاص يافته است. در مورد سيستم هاي قوي ليزري مورد نظر با توان احتمالا در حدود مگا وات ( حداقل براي چند ده ثانيه ) يك سيستم نوري باريكه ليزر را به هدف ( هواپيما - ماهواره يا موشك ) هدايت مي كند تا خسارت غير قابل جبراني به وسايل احساسگر آن وارد كند و يا اينكه چنان آسيبي به سطح آن وارد كند كه نهايتا در اثر تنش هاي پروازي دچار صدمه شود سيستم هاي ليزر مستقر در زمين به خاطر اثر معروف به شوفايي گرمايي كه در جو اتفاق مي افتد فعلا چندان عملي به نظر نمي رسند. جو زمين توسط باريكه ليزر گرم مي شود و اين باعث مي شود كه جو مانند يك عدسي منفي باريكه را واگرا سازد با قرار دادن ليزر در هواپيماي در حال پرواز در ارتفاع بالا و يا در يك سفينه فضايي مي توان از اين مساله اجتناب ورزيد. اطالعات موجود در اين زمينه ها به علت سري بودن آن ها اغلب ناقص و پراكنده اند. اما به نظر مي رسد كه اين سيستم ها كلا شامل باريكه هايي پيوسته با توان 5 تا 10 مگا وات (براي چند ثانيه ) با يك وسيله هدايت اپتيكي به قطر 5 تا 10 متر باشند مناسب ترين ليزرها براي اينگونه كاربرد ها احتمالا ليزرهاي شيميايي اند ( DF يا HF) . ليزرهاي شيميايي به ويژه براي سيستم هاي مستقر در فضا جالب اند زيرا توسط آن ها مي توان انرژي لازم را به صورت انرژي ذخيره فشرده به شكل انرژي شيميايي تركيب هاي مناسب تامين كرد.

تمام نگاري
تمام نگاري يك تكنيك انقلابي است كه عكسبرداري سه بعدي (يعني كامل ) از يك جسم و يا يك صحنه را ممكن مي كند. اين تكنيك در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر كرده توان تفكيك ميكروسكوپ الكتروني پيشنهاد شد) و به صورت يك پيشنهاد عملي در آمدو اما قابليت واقعي اين تكنيك پس از اختراع ليزر نشان داده شد.
اساس تمام نگاري به اين صورت است كه باريكه ليزر بوسيله آينه كه قسمتي از نور را عبور مي دهد به دو باريكه ( بازتابيده و عبوري) تقسيم مي شوند. باريكه بازتابيده مستقيما به صفحه حساس به نور برخورد مي كند در حالي كه باريكه عبوري جسمي را كه بايد تمام نگاري شود روشن مي كند. به اين ترتيب قسمتي از نوري كه از جسم پراكنده شده هم روي صفحه حساس ( فيلم ) مي افتد. به علت همدوس بودن باريكه ها يك نقش تداخلي از تركيب دو باريكه روي صفحه تشكيل مي شود حالا اگر اين فيلم ظاهر شود و تحت بزرگنمايي كافي بررسي شود مي توان اين فريزهاي تداخلي را مشاهده كرد. فاصله بين دو فريز تاريك متوالي معمولا حدود 1 ميكرومتر است. اين نقش تداخلي پيچيده است و هنگامي كه صفحه را به وسيله چشم بررسي مي كنيم به نظر نمي رسد كه حامل تصوير مشابه با جسم اوليه باشد اما اين فريزهاي تداخلي در واقع حامل ضبط كاملي از جسم اوليه است.
حال فرض كنيد كه صفحه ظاهر شده را دوباره به محلي كه در معرض نور قرار داشت بازگردانيم و جسم تحت مطالعه را برداربم باريكه بازتابيده اكنون با فريزهاي روي صفحه برهمكنش مي كنند و دوباره در پشت صفحه يك باريكه پراشيده ايجاد مي كندبنابراين ناظري كه به صفحه نگاه مي كند جسم را در پشت صفحه مي بيند طوري كه انگار هنوز هم جسم در آنجاست.
يكي از جالبترين خصوصيات تمام نگاري اين است كه جسم بازسازي شده رفتار سه بعدي نشان مي دهد بنابراين با حركت دادن چشم از محل تماشا مي توان طرف ديگر جسم را مشاهده كرد. توجه كنيد كه براي ضبط تمام نگار بايد سه شرط اصلي را براورد: الف) درجه همدوسي نور ليزر بايد به اندازه كافي باشد تا فريزهاي تداخلي در روي صفحه تشكيل شود. ب) وضعيت نسبي جسم - صفحه و باريكه ليزر نبايد در هنگام تاباندن نور به صفحه كه حدود چند ثانيه طول مي شكد تغيير كند در واقع تغيير محل نسبي بايد كمتر از نصف طول موج ليزر باشد تا از درهم شدن نقش تداخلي جلوگيري كند. ج) قدرت تفكيك صفحه عكاسي بايد به اندازه كافي زياد باشد تا بتواند فريزهاي تداخلي را ضبط كند.
تمام نگاري به عنوان يك تكنيك ضبط و بازسازي تصوير سه بعدي بيشترين موفقيت را تاكنون در كاربردهاي هنري داشته است تا در كاربردهاي علمي . اما بر اساس تمام نگاري از يك تكنيك تداخل سنجي تمام نگاشتي در كاربردهاي علمي به عنوان وسيله اي براي ضبط و اندازه گيري واكنشها و ارتعاشات اجسام سه بعدي استفاده شده است.

ارتباط نوري
استفاده از باريكه ليزر براي ارتباط در جو به خاطر دو مزيت مهم اشتياق زيادي برانگيخت :
الف) اولين علت دسترسي به پهناي نوار نوساني بزرگ ليزر است. زيرا مقدار اطلاعات قابل انتقال روي يك موج حامل متناسب با پهناي نوار آن است. فركانس موج حامل از ناحيه ميكروموج بخ ناحيه نور مرئي به اندازه 104 برابر افزايش مي يابد و در نتيجه امكان استفاده از يك پهناي بزرگتر را به ما مي دهد.
ب) علت دوم طول موج كوتاه تابش است. چون طول موج ليزر نوعا حدود 104 مرتبه كوچكتر از امواج ميكرو موج است با قطر روزنه يكسان D واگرايي امواج نوري به اندازه 104 مرتبه نسبت به واگرايي امواج ميكرو موج كوچكتر است. بنابراين براي دستيابي به اين واگرايي آنتن يك سيستم اپتيكي مي تواند به مراتب كوچكتر باشد. اما اين دو امتياز مهم با اين واقعيت خنثي مي شوند كه باريكه نوري تحت شرايط ديد ضعيف در جو به شدت تضعيف مي شود. در نتيجه استفاده از ليزرها در ارتباطات فضاي باز ( هدايت نشده ) فقط در مورد اين موارد توسعه يافته اند :
الف) ارتباطات فضايي بين دو ماهواره و يا بين يك ماهواره و يك ايستگاه زميني كه در يك شرايط جوي مطلوب قرار گرفته است. ليزرهايي كه در اين مورد استفاده مي شوند عبارتند از :
Nd:YAG ( با آهنگ انتقال 109 بيت در ثانيه ) و يا CO2 با آهنگ انتقال 3*108 بيت در ثانيه ). گرچه CO2 نسبت به Nd: YAG داراي بازدهي بالاتري است و لي داراي اين اشكال است كه نياز به سيستم آشكارسازي پيچيده تري دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.
ب) ارتباطات بين دو نقطه در يك مسافت كوتاه مثلا انتقال اطلاعات درون يك ساختمان. براي اين منظور از ليزرهاي نيمرسانا استفاده مي شود.
اما زمينه اصلي مورد توجه در ارتباطات نوري مبتني بر انتقال از طريق تارهاي نوري است. انتقال هدايت شده نور در تارهاي نوري پديده اي است كه از سالها پيش شناخته شده است اما تارهاي نوري اوليه فقط در مسافت هاي خيلي كوتاه مورد استفاده قرار مي گرفتند مثلا كاربرد متعارف آن ها در وسايل پزشكي براي اندوسكوپي است. بنابراين در اواخر سال 1960 تضعيف در بهترين شيشه هاي نوري در حدود 1000 دسي بل بر كيلومتر بود. از آن زمان پيشرفت تكنيكي شيشه و كوارتز باعث تغيير شگفت انگيز در اين عدد شده است به طوري كه اين تضعيف براي كوارتز به 5/0 دسي بل بر كيلومتر رسيده است. اين تضعيف فوق العاده كوچك آينده مهمي را براي كاربرد تارهاي نوري در ارتباطات راه دور نويد مي دهد سيستم ارتباطات تارهاي نوري نوعا شامل يك چشمه نور يك جفت كننده نوري مناسب براي تزريق نور به تارها و درانتها يك فوتوديود است كه باز هم به تار متصل شده است. تكرار كننده شامل يك گيرنده و يك گسيلنده جديد است. چشمه نور سيستم اغلب ليزرهاي نيمرساناي نا هم پيوندي دوگانه است. اخيرا طول عمر اين ليزرها تا حدود 106 ساعت رسيده است. گرچه تا كنون اغلب از ليزر گاليم ارسنيد GaAs استفاده شده است ولي روش بهتر استفاده از ليزرهاي نا هم پيوندي است كه در آنها لايه فعال تركيبي از آلياژ چهارگانه به صورت In1-x Gax Asy P1-y است. در اين حالت لبه هاي P ,n پيوندگاه از تركيب دوگانه InP تشكيل شده است و با استفاده از تركيب y=2v2x مي توان ترتيبي داد كه چهار آلياژ چهارگانه شبكه اي كه با InP جور شود با انتخاب صحيح x طول موج تابش را طوري تنظيم كرد كه در اطراف µm 3/1 و يا اطراف 6/1 µm واقع شود كه به ترتيب مربوط به دو مينيموم جذب در تار كوارتز هستند. بسته به قطر d هسته مركزي تار ممكن است از نوع تك مدباشد براي آهنگ انتقال متداول فعلي حدود 50 مگابيت در ثانيه معمولا از تارهاي چند مدي استفاده مي شود. براي آهنگ انتقال هاي بيشتر تارهاي تك مدي مناسبتر به نظر مي رسند. گيرنده معمولا يك فوتوديود بهمني است اگر چه ممكن است از يك ديود PIN و يك ديود تقويت كننده حالت جامد مناسب نيز استفاده كرد.

كاربرد در زيست شناسي
از ليزر به طور روزافزوني در زيست شناسي و پزشكي استفاده مي شود. اينجا هم ليزر مي تواند ابزار تشخيص و يا وسيله برگشت ناپذير مولكولهاي زنده يك سلول و يا يك بافت باشد. ( زيست شناسي نوري و جراحي ليزري)
در زيست شناسي مهمترين كاربرد ليزر به عنوان يك وسيله تشخيصي است. ما در اينجا تكنيك هاي ليزري زير را ذكر مي كنيم :
الف) فلوئورسان القايي به وسيله تپهاي فوق العاده كوتاه ليزر در DNA در تركيب رنگي پيچيده DNA و در مواد رنگي موثر در فتوسنتز
ب) پراكندگي تشديدي رامان به عنوان روشي براي مطالعه ملكولهاي زنده مانند هموگلوبين و يا رودوپسين ( عامل اصلي در سازوكار بينايي)
ج) طيف نمايي همبستگي فوتوني براي بدست آوردن اطلاعاتي در مورد ساختار و درجه انبوهش انواع ملكولهاي زنده
د) روشهاي تجزيه فوتوني درخشي پيكوثانيه اي براي كاوش رفتار ديناميكي مولكولهاي زنده در حالت برانگيخته
به ويژه بايد از روشي موسوم به ميكروفلوئورمتر جريان ياد كرد. در اينجا سلولهاي پستانداران در حالت معلق مجبور مي شوند كه از يك اتاقك مخصوص جريان عبور كنند كه در آنجا رديف مي شوند و سپس يكي يكي از باريكه كانوني شده ليزر يوني آرگون عبور مي كنند. با قرار دادن يك آشكارساز نوري در جاي مناسب مي توان اين كميت ها را اندازه گيري كرد :
الف) نورماده اي رنگي كه به يك جزء خاص تشكيل دهنده سلول يعني DNA متصل ( كه اطلاعاتي راجع بع مقدار آن جزء تشكيل دهنده سلول را به دست مي دهد) امتياز ميكروفلوئورمتري جريان در اين است كه اندازه گيري ها را براي تعداد زيادي از سلولها در مدت زمان محدود ميسر مي سازد. به اين وسيله مي توانيم دقت خوبي براي اندازه گيري آماري داشته باشيم.
در زيست شناسي از ليزر براي ايجاد تغيير برگشت ناپذير در ملكولهاي زنده و يا اجزاي تشكيل دهنده سلول هم استفاده مي شود. به ويژه تكنيك هاي معروف به ريز - باريكه را ذكر مي كنيم. در اينجا نور ليزر ( مثلا يك ليزر Ar+ تپي ) به وسيله يك عدسي شيئي ميكروسكوپ مناسب در ناحيه اي از سلول با قطري در حدود طول موج ليزر (05 µm) كانوني مي شود منظور اصلي از اين تكنيك مطالعه رفتار سلول پس از آسيبي است كه با ليزر در ناحيه خاصي از آن ايجاد شده است.
در زمينه پزشكي بيشترين كاربرد ليزرها در جراحي است ( جراحي ليزري) اما در بعضي موارد ليزر براي تشخيص نيز به كار مي رود. ( استفاده باليني از ميكروفلوئورمتر جريان - سرعت سنجي دوپلري براي اندازه گيري سرعت خون - فلوئورسان ليزري - آندوسكوپي ناي براي آشكارسازي تومورهاي ريوي در مراحل اوليه
در جراحي از باريكه كانوني شده ليزر ( اغلب ليزر CO2 ) به جاي چاقوي جراحي معمولي ( يا برقي ) استفاده مي شود. باريكه فروسرخ ليزر CO2 به شدت به وسيله ملكولهاي آب موجود در بافت جذب مي شود و موجب تبخير سريع اين ملكولها و در نتيجه برش بافت مي شود. برتريهاي اصلي چاقوي ليزري را مي توان به صورت زير خلاصه كرد :
الف) دقت بسيار زياد به ويژه هنگامي كه باريكه با يك ميكروسكوپ مناسب هدايت شود ( جراحي ليزر)
ب) امكان عمل در نواحي غير قابل دسترس.. بنابراين عملا هر ناحيه از بدن را كه با يك دستگاه نوري مناسب ( مثلا عدسي ها و آينه ها) قابل مشاهده باشد مي توان به وسيله ليزر جراحي كرد.
ج) كاهش فوق العاده خونروي در اثر برش رگهاي خوني به وسيله باريكه ليزر ( قطر رگي حدود 0/5 mm )
د) آسيب رساني خيلي كم به بافتهاي مجاور ( حدود چند ميكرومتر) اما در مقابل اين برتريها بايد اشكالات زير را هم در نظر داشت :
الف) هزينه زياد و پيچيدگي دستگاه جراحي ليزري
ب) سرعت كمتر چاقوي ليزري
ج) مشكلات قابليت اعتماد و ايمني مربوط به چاقوي ليزري
با اين اشاره اجمالي به جراحي ليزري اكنون مي خواهيم به شرح مفصلتري از تعدادي از اين كاربردها بپردازيم . در چشم بيماران مبتلا به مرض قند استفاده شده است در اين مورد باريكه ليزر به وسيله عدسي چشم بر روي شبكيه كانوني مي شود. پرتو سبز ليزر به شدت به وسيله گلبول هاي سرخ جذب مي شود و اثر حرارتي حاصل باعث اتصال دوباره شبكيه يا انعقاد رگهاي آن مي شود. اكنون ليزر استفاده روزافزوني در گوش و حلق و بيني پيدا كرده است. استفاده از ليزر در اين شاخه از جراحي جذابيت خاصي دارد. زيرا با اعضايي مانند ناي - حلق و گوش مياني سروكار دارد كه به علت عدم دسترسي به آن ها جراحي معمولي مشكل است. اغلب در اين مورد ليزر همراه با يك ميكروسكوپ استفاده مي شود. همچنين ليزر براي جراحي داخل دهان نيز مفيد است ( براي برداشتن غده هاي مخاطي ). امتيازات اصلي در اينجا جلوگيري از خونريزي و فقدان لختگي خون و درد پس از عمل جراحي و بهبود سريع بيمار است. ليزر همچنين اهميت خود را در بهبود خونريزيهاي سنگين در جهاز هاضمه ثابت كرده است. در اين حالت باريكه ليزر ( معمولا ليزر نئودميوم يا آرگون يوني ) به وسيله يك تار نوري مخصوص كه در داخل يك آندوسكوپي داخلي قرار گرفته است پرتو ليزر را به ناحيه مورد معالجه هدايت مي كند. ليزر همچنين در بيماري زنان مفيد است درحالي كه اغلب به همراه يك ميكروسكوپ استفاده مي شود. كاهش قابل ملاحظه درد و لخته شدن خون ارزش مجدد چاقوي ليزري را بيان مي كند. در پوست درماني اغلب از ليزر براي برداشتن خالها و معالجه امراض رگها استفاده مي شود. بالاخزه استفاده از ليزرها در جراحي عمومي و جراحي غده اميدوار كننده است.
__________________
ميدانستم ، ميدانستم روزي خورشيد نيز خاموش خواهد شد خدايا آيا او نيز فراموش خواهد شد ....

رويايم را ببين
خداوند در آن گوشه زيز سايه سار درخت لطف خويش
با لبخند
نفسهايت را سپاس ميگويد
پس بر تو چه گذشته كه اينچنين
آرزوي مرگ ميكني ......





ببين فرصت نيست
فرصت براي بودن نيست
پس سعي كن
تا درخت را احساس كني
سبزه رابشنوي
و بوسه دادن را از گل سرخ بياموزي
تا روزي
شايد
درخت را تا مرز انار
تعقيب كني
(تاري)


پاسخ با نقل قول
  #4  
قدیمی 12-17-2009
تاري تاري آنلاین نیست.
کاربر فعال
 
تاریخ عضویت: Aug 2009
محل سکونت: تهران
نوشته ها: 1,296
سپاسها: : 0

33 سپاس در 31 نوشته ایشان در یکماه اخیر
پیش فرض

مقدمه:
از گذشته ها معلوم است که فیزیک در زندگی بشر کاربرد بیشتری دارد، دانشمندان و علما کوشیده اند تا مفاهیمی فیزیکی را برای متباقی بشر کشف و تقدیم نماید.
چون موضوع بحث ما مفاهیم اپتیکی است بنا باید در رابطه به فزیک اپتیک ابراز نظر نماییم.
از همان بدو خلقت اپتیک نقش و تاثیر خودش را در زندگی داشته و از همان اوایل نیز بررسیها و مطالعات در این زمینه شروع و اختراعاتی به ثبت رسیده است، یکی از شاخه‌های اساسی فیزیک در تمام سطوح تحصیلی ، اپتیک می‌باشد. اغلب ما و شما در زندگی روزمره پدیده‌های اپتیکی و وسایل اپتیکی(قطعات نوری)را دیده و بکار گرفته‌ایم.
برخی ها دنبال این هستند که چرایی این پدیده‌ها را پیدا کنند، اما برخیها دنبال ابزارهایی هستند که این پدیده‌ها را مشاهده کنند. علم جدید پیشنهاد می‌کند که هر دو گروه خودش را به معادله عدسی نازک، قوانین اسنل، چگونگی ردیابی پرتو و ... مجهز نماید. یک فرد کنجکاو وقتی پدیده اپتیکی را می‌بیند سریعا دنبال طراحی دستگاه های اپتیکی می‌رود.
اما باید بدانیم که بدون مجهز شدن به علم اپتیک نمی‌توانیم سیستم اپتیکی بسازیم و بدون سیستم اپتیکی زندگی نیز برای بشر مشکل خواهد بود.


لیزر چیست؟
نورلیزر کاملا متفاوت، قویتر و درخشانتر از هر نوع نوری که در طبیعت یافت می شود است. این نور قابلیت این را دارد که اجسام بسیار سخت و فلزی حتی الماس را که درجه سختی بلندی که دارد، با درخشش شان سوراخ کند، چون این نور به صورت دسته جمعی منعکس می نمایید بنا به یکجا بودن و تکفام بودن شان می تواند بر هرچیز دیگر غالب شود و آنرا سوراخ کند، این دسته جمعی پخش شدن و تکفام بودن نور یگانه فرق نور لیرزی با انواع دیگر نور که در طبیعت است را به اثبات می رساند. و همچنان نور ليزر را مي‌توان خيلي دقيق كنترل كرد و به صورت باريكه مداومي به نام موج ـ پيوسته يا انفجارهاي سريعي به نام تپ (پالس) در آورد.
بنابراین نور لیزر در طبعیت کاربرد زیاد دارد.
کاربرد لیزر:
از جمله کاربرد لیزر را می توان طور ذیل نام برد.
لیزر در طبعت دو نوع کاربرد دارد 1- برای جوشکاری اجسام فلیزی و سوراخ کردن اجسام سخت 2- باريكه‌هاي كم قدرت و فوق‌العاده دقيق انواع ديگر ليزر را مي‌توان براي انجام دادن كارهاي بسيار ظريف مثل جراحي روي چشم انسان به كار برد و در دستگاههاي ويدیويي از نور ليزر براي "خواندن" ديسكهاي ويدیويي و ايجاد تصوير متحرك همراه با صدا استفاده مي‌كنند. مقدار زيادي اطلاعات را روي ديسكهاي ليزري ضبط مي‌كنند تا بعدا روي صفحه كامپيوتر خوانده شوند يا توسط چاپگرهاي ليزري به شكل نسخه سخت روي كاغذ چاپ شوند. داکتران از نور ليزر به عنوان نوع جديدي "چاقوي جراحي" بدون خونريزي استفاده مي‌شود و وقتي كه نسجي مثل قسمت معيوب كيسه صفرا در خلال جراحي برداشته مي‌شود رگهاي خوني بسته مي‌شوند. كارهاي داکتران دندان با ليزر درد كمتري دارند و برای پرکاری دندان بعد از گذاشتن مواد مخصوص، از ليزر استفاده می کنند تا محکم و ثابت بیاید.
استفاده از لیزر در صنعت:
قسمی که در کاربرد لیزر در قسمت بالا ذکر شد، در صنعت نیز از ليزرها براي عمليات گرمايي فلزات، جوش دادن قسمتها به يكديگر، و وسایل همترازي دقيق استفاده مي‌شود. ليزرها را براي اندازه‌گيري دقيق فاصله‌هاي خيلي بزرگ و نيز فاصله‌هاي خيلي كوچك به كار مي‌برند. علاوه بر اينها، ليزرها را همراه با تارهاي نوري براي انتقال بهتر داده‌ها و بهبود ارتباط تلیفوني به كار مي‌گيرند.
لیزر چگونه کار می کند:
هر لیزر قسمت های مشخص دارد، اول این که یک لیزر باید یک چشمه انرژی وجود داشته باشد که این چشمه اغلبا یک الکتریسته است ولی بجای ان می توان یک چشمه پر قدرت نوری معمولی را استفاده کرد و یا حتا می توان از لیزر دیگر استفاده کرد.
قسمت لازم دیگر لیزر را به نام محیط فعال یاد می کند که محیط فعال عبارت از ماده است که میتواند انرژی را جذب و یا آزاد بتواند. که این محیط می تواند جامد باشد مثل یاقوت و یا بلور های دیگر، میتواند مایع باشد مثل بعضی رنگینه ها و می تواند گاز باشد مثل کار بن دای اکساید. که باریکه لیزر در حقیقت در همان قسمت محیط فعال تولید می شود.
آخرين قسمت اساسي ليزرساز و كار پسخوراند است. ساز و كار پسخوراند از دو آينه يا سطوح بازتابنده ديگر تشكيل شده است كه در دو انتهاي محيط فعال قرار مي‌گيرند. يكي از آينه‌ها، به نام جفتگر خروجي بازتابنده جزیي است.
در حقيقت دستگاه ليزر حكم يك منبع تابش كننده را پيدا مي‌كند. بطور خلاصه اين دستگاه مولد نور، از اجتماع يك تقويت كننده و دو آينه تشكيل يافته است. فضایي كه تقويت كننده و دو آينه را دربرمي‌گيرد حفره ‌گويند و محيط فعال هم، همين حفره است.
حالا می بینیم که لیزر چگونه کارمی کند.
عمل لیزر در چند مرحله انجام می گیرد. چشمه انرژی درخششی از خود می فرستد و محیط فعال آن را جذب می کند و انرژی جذب شده بعضی از اتم های محیط فعال را بر می انگیزد و آنها به تراز انرژی زیاتر می پرند. درخشش مکرر نور برای برانگیزش، یا پمپ محیط فعال ادامه می دهد. وقتی که در محیط فعال تعداد اتم های انرژی زیاد بیشتر از انرژی کم باشد، برعکس جمعیت یا به اصطلاح وارونه جمعیت بوجود می آید. که پدیده وارونه یا برعکس برای عمل لیزری ضروری است.
در حين عمل ليزري، اتمهاي با انرژي زياد، در حال برگشتن به تراز انرژي كم، انرژي اضافي خود را به صورت مقادير نوري ظريفي به اسم فوتون تابش مي‌كنند. اين نور به نوبه خود، اتمهاي ديگري را در محيط فعال برمي‌انگيزد و همين اتمها نيز نور آزاد مي‌كنند. به اين ترتيب اتمهاي بيشتر و بيشتري از محيط فعال فوتون تابش مي‌كنند و واكنش زنجيره‌اي افزايش انرژي راه مي‌افتد. اين پديده به گسيل(فرستادن نور) القایي موسوم است.
آينه‌هاي دو سر ليزر نور فرستاده شده را به محيط فعال بر مي‌گردانند و نور باز هم پرشدت‌تر مي‌شود، فرايندي كه تقويت نام دارد. با بيشتر و بيشتر شدن شدت، نور ايجاد شده در ليزر آن قدر قوي مي‌شود كه از جفتگر خروجي كه به طور جزیي نقره اندود است به صورت نور ليزر به بيرون مي‌گريزد.
معمولا ليزرها را بر حسب محيط فعالشان نامگذاري مي‌كنند. مثلا، در ليزر ياقوت محيط فعال تكه جامدي از ياقوت است. در ليزر رودامين از رودامين استفاده مي‌كنند. رودامين مايع رنگينه فلویورساني است كه به عنوان محيط فعال به كار مي‌رود. در ليزر گازي كربن دي اكسيد از كربن دي اكسيد به عنوان محيط فعال بهره مي‌گيرند و در ليزر گازي هليم نیون از مخلوط گازهاي هليم و نیون استفاده مي‌شود.
فرق نور لیزری با نور معمولی:
فرق لیزر با دیگر به صورت اشاره در بالا ذکر شده است ولی به صورت مختصر می توان گفت که یگانه فرق نور لیزر و نور معمولی که در طبیعت یافت می شود تکفام بودن شان است. و همچنان نور لیزر به صورت منظم پخش می شود، اما نور معمولی به صورت غیر منظم پخش می شود. که منظم و غیر منظم بودن آن را میتوان به پخش صدای منظم و غیر منظم تشبه کرد.
ويژگي ديگر نور ليزر راستايي بودن آن است. ليزر با باريكه‌هاي مستقيم حركت مي‌كند و نظير نور معمولي پخش نمي‌شود. مثلا، باريكه نور چراغ قوه كه بر ديواري در فاصله حدود 320 متر مي‌افتد دايره‌اي به قطر 65 متر را روشن مي‌كند. ولي، باريكه ليزر بر همين ديوار و در همين فاصله دايره‌اي به قطر حدود 3/0 متر را مي‌پوشاند.
یکی از فرق های عمده نور معمولی با نور لیزر این است که نور معمولی هنگام عبور از منشور به هفت رنگ دیگر تجزیه می شود، اما نور ليزر با گذشتن از منشور به همان صورت باريكه مستقيم تكفام وارد شده خارج مي‌شود.
انواع لیزر های موجود:
در طبيعت لیزر های مختلف وجود دارد که نظر به محیط فعال آن تقسیم می شود.
1- لیزر های جامد:
قمسیکه گفتیم در محیط فعال می توان از جامدات نیز استفاده کرد، یعنی هر نوع جامد نمی تواند در این محیط استفاده شود، پس جامدات باید دارای خاصیت ذیل باشد. بلور بايد شفاف باشد تا نور بتواند براي برانگيزش محيط فعال وارد آن شود و خود باريكه ليزر بتواند از آن بگريزد. علاوه بر آن، اتمهاي محيط فعال بايد بتوانند طول موجهاي مورد نظر را به وجود آورند.
جامدات و یا بلورهايي كه براي ايجاد ليزر به كار مي‌روند معمولا حاوي مقدار كمي ناخالصي هستند كه در بلور خالص وجود ندارد. بلور خالص ماده ميزبان، و فرايند افزودن ناخالصي آلايش ناميده مي‌شود. در ليزر ياقوت ماده ميزبان اكسيد آلومينيم و ماده آلاينده يا ناخالصي اكسيد كروم است. به همین منوال می توان بلور های دیگری را نیز در محیط فعال به کار برد. که هر یک دارای مقدار کمی ناخالص هستند.
2- ليزرهاي گازي
در ليزرهاي گازي نوع خاصي گاز داخل يك اتاقك شفاف بي‌درز مانند لامپ های یا نیون های فلیورسنت در جريان است. وقتي كه گاز جريان مي‌يابد، از دو الكترود مي‌گذرد، يكي با بار مثبت و ديگري با بار منفي. الكترونهايي كه بين الكترودها جريان دارند الكترونهاي داخل اتمهاي گاز در حال جريان را به ترازهاي انرژي بالا پمپ مي‌كنند.
بر خلاف جامد، گاز مي‌تواند جريان يابد يا حركت كند. با جريان گاز در داخل لوله، اتمهاي برانگيخته موقع دور شدن از الكترودها به تراز انرژي پايينتر مي‌افتند. الكترونهاي اتمهاي گاز برانگيخته با افتادن به تراز انرژي پايينتر نور های را از خود صادر میکند. اين فوتونها یا نور ها بين آينه‌ها به جلو و عقب بازتاب مي‌كنند و درست مثل ليزر جامد ياقوت تقويت مي‌شوند.
وقتي كه نور ليزري در سطح قابل استفاده برقرار شد، باريكه از طريق آينه خروجي نيم شفاف خارج مي‌شود. اكنون ليزر گازي هليم ـ نیون يكي از معمولترين ليزرهاي گازي است. همان طور كه از اسم آن برمي‌آيد، محيط فعال شامل مخلوطي از تقريبا ده قسمت گاز هليم و يك قسمت گاز نیون است. در ليزر گازي هليم ـ نیون باريكه ليزري توسط اتمهاي نیون ايجاد مي‌شود.
3- ليزرهاي مايع
ليزرهايي كه از مايعات به عنوان محيط فعال استفاده مي‌‌كنند اين مزيت را دارند كه، يك مايع داراي خاصيت همگني است و سرد كردن آن نيز به سهولت انجام مي‌پذيرد. بعلاوه در مايعات مي‌توان غلظت را به اختيار و به سهولت تغيير داد. بالاخره مايع را مي‌توان به آساني به هر شكل و حجمي درآورد. در صورتي كه اين خواص در بلورها بطور كامل وجود ندارد و بعلاوه عمل تبلور در آنها احتياج بدقت و زمان زيادي دارد.
خطوط ليزر حاصله از مايع پهن‌تر از خطوط ليزر جامد است. زيرا در مايعات مواد احاطه كننده يونهاي فعال مرتبا در حال تغيير حجم هستند. بنابراين مايعاتي را براي ليزر انتخاب مي‌كنند كه ترازهاي انرژي آنها ثابت مانده و از اغتشاشات خارجي حتي‌الامكان مصون باشد.
__________________
ميدانستم ، ميدانستم روزي خورشيد نيز خاموش خواهد شد خدايا آيا او نيز فراموش خواهد شد ....

رويايم را ببين
خداوند در آن گوشه زيز سايه سار درخت لطف خويش
با لبخند
نفسهايت را سپاس ميگويد
پس بر تو چه گذشته كه اينچنين
آرزوي مرگ ميكني ......





ببين فرصت نيست
فرصت براي بودن نيست
پس سعي كن
تا درخت را احساس كني
سبزه رابشنوي
و بوسه دادن را از گل سرخ بياموزي
تا روزي
شايد
درخت را تا مرز انار
تعقيب كني
(تاري)


پاسخ با نقل قول
پاسخ


کاربران در حال دیدن موضوع: 1 نفر (0 عضو و 1 مهمان)
 
ابزارهای موضوع
نحوه نمایش

مجوز های ارسال و ویرایش
شما نمیتوانید موضوع جدیدی ارسال کنید
شما امکان ارسال پاسخ را ندارید
شما نمیتوانید فایل پیوست در پست خود ضمیمه کنید
شما نمیتوانید پست های خود را ویرایش کنید

BB code is فعال
شکلک ها فعال است
کد [IMG] فعال است
اچ تی ام ال غیر فعال می باشد



اکنون ساعت 02:24 AM برپایه ساعت جهانی (GMT - گرینویچ) +3.5 می باشد.



Powered by vBulletin® Version 3.8.4 Copyright , Jelsoft Enterprices مدیریت توسط کورش نعلینی
استفاده از مطالب پی سی سیتی بدون ذکر منبع هم پیگرد قانونی ندارد!! (این دیگه به انصاف خودتونه !!)
(اگر مطلبی از شما در سایت ما بدون ذکر نامتان استفاده شده مارا خبر کنید تا آنرا اصلاح کنیم)


سایت دبیرستان وابسته به دانشگاه رازی کرمانشاه: کلیک کنید




  پیدا کردن مطالب قبلی سایت توسط گوگل برای جلوگیری از ارسال تکراری آنها