خیام و ریاضیات
پیش از کشف رساله خیام در جبر، شهرت او در مشرقزمین به واسطه اصلاحات سال و ماه ایرانی و در غرب به واسطه ترجمه رباعیاتش بودهاست. اگر چه کارهای خیام در ریاضیات (به ویژه در جبر) به صورت منبع دست اول در بین ریاضیدانان اروپایی سدهٔ ۱۹ میلادی مورد استفاده نبودهاست،
[۴۱] میتوان رد پای خیام را به واسطه طوسی در پیشرفت ریاضیات در اروپا دنبال کرد.
[۴۲] قدیمیترین کتابی که از خیام اسمی به میان آورده و نویسندهٔ آن هم عصر خیام بوده، نظامی عروضی مؤلف «چهار مقاله» است. ولی او خیام را در ردیف منجمین ذکر میکند و اسمی از رباعیات او نمیآورد.[۴۳] با این وجود جورج سارتن با نام بردن از خیام به عنوان یکی از بزرگترین ریاضیدانان قرون وسطی چنین مینویسد:
«خیام اول کسی است که به تحقیق منظم علمی در معادلات درجات اول و دوم و سوم پرداخته، و طبقهبندی تحسینآوری از این معادلات آوردهاست، و در حل تمام صور معادلات درجه سوم منظماً تحقیق کرده، و به حل (در اغلب موارد ناقص) هندسی آنها توفیق یافته، و رساله وی در علم جبر، که مشتمل بر این تحقیقات است، معرف یک فکر منظم علمی است؛ و این رساله یکی از برجستهترین آثار قرون وسطائی و احتمالاً برجستهترین آنها در این علم است. »
خیام در مقام ریاضیدان و ستارهشناس تحقیقات و تالیفات مهمی دارد. از جمله آنها
رسالة فی البراهین علی مسائل الجبر و المقابله است که در آن از جبر عمدتاً هندسی خود برای حل معادلات درجه سوم استفاده میکند. او معادلات درجه دوم را از روشهای هندسی
اصول اقلیدس حل میکند و سپس نشان میدهد که معادلات درجه سوم با قطع دادن مخروطها با هم قابل حل هستند.
[۴۴] برگن معتقد است که «هر کس که ترجمهٔ انگلیسی [جبر خیام] به توسط کثیر
[۴۵]* را بخواند استدلالات خیام را بس روشن خواهد یافت و، نیز، از نکات متعدد جالب توجهی در تاریخ انواع مختلف معادلات مطلع خواهد شد.»
[۴۶] مسلم است که خیام در رسالههایش از وجود جوابهای منفی و موهومی در معادلات آگاهی نداشتهاست و جواب صفر را نیز در نظر نمیگرفته است
[۴۷].
یکی دیگر از آثار ریاضی خیام
رسالة فی شرح ما اشکل من مصادرات اقلیدس است. او در این کتاب اصل موضوعهٔ پنجم اقلیدس را دربارهٔ قضیهٔ خطوط متوازی که شالودهٔ هندسهٔ اقلیدسی است، مورد مطالعه قرار داد و اصل پنجم را اثبات کرد.
[۴۸] به نظر میرسد که تنها نسخه کامل باقیمانده از این کتاب در کتابخانه
لیدن در
هلند قرار دارد.
[۴۹]
درکتاب دیگری از خیام که اهمیت ویژهای در تاریخ ریاضیات دارد رسالهٔ مشکلات الحساب (مسائلی در حساب) هرچند این رساله هرگز پیدا نشد اما خیام خود به این کتاب اشاره کردهاست و ادعا میکند قواعدی برای بسط دوجملهای (
a +
b)
n کشف کرده و اثبات ادعایش به روش جبری در این کتاب است.
، به هر حال قواعد این بسط تا
n = 12 توسط
طوسی (که بیشترین تأثیر را از خیام گرفته) در کتاب «جوامع الحساب» آورده شدهاست.
[۵۰] روش خیام در به دست آوردن ضرایب منجر به نام گذاری مثلث حسابی این ضرایب به نام
مثلث خیام شد، انگلیسی زبانها آن را به نام
مثلث پاسکال میشناسند که البته خدشهای بر پیشگامی خیام در کشف روشی جبری برای این ضرایب نیست.
[۵۱]
خیام به تحلیل ریاضی موسیقی نیز پرداختهاست و در
القول علی اجناس التی بالاربعاء مسالهٔ تقسیم یک چهارم را به سه فاصله مربوط به مایههای بینیمپرده، با نیمپردهٔ بالارونده، و یک چهارم پرده را شرح میدهد.
[۱۳]
مهمترین دستآوردها- ابداع نظریهای دربارهٔ نسبتها همارز با نظریهٔ اقلیدس.
- «در مورد جبر، کار خیام در ابداع نظریهٔ هندسی معادلات درجهٔ سوم موفقترین کاری است که دانشمندی مسلمان انجام دادهاست.»[۱۳]
- او نخستین کسی بود که نشان داد معادلهٔ درجهٔ سوم ممکن است دارای بیش از یک جواب باشد و یا این که اصلاً جوابی نداشته باشند.«آنچه که در هر حالت مفروض اتفاق میافتد بستگی به این دارد که مقاطع مخروطیای که وی از آنها استفاده میکند در هیچ نقطه یکدیگر را قطع نکنند، یا در یک یا دو نقطه یکدیگر را قطع کنند.»[۵۲]
- «نخستین کسی بود که گفت معادلهٔ درجهٔ سوم را نمیتوان عموماً با تبدیل به معادلههای درجهٔ دوم حل کرد، اما میتوان با بکار بردن مقاطع مخروطی به حل آن دست یافت.»[۱۳]
- «در نیمهٔ اول سدهٔ هیجدهم، ساکری اساس نظریهٔ خود را دربارهٔ خطوط موازی بر مطالعهٔ همان چهارضلعی دوقائمهٔ متساویالساقین که خیام فرض کرده بود قرار میدهد و کوشش میکند که فرضهای حاده و منفرجهبودن دو زاویهٔ دیگر را رد کند.»[۵۳]
- به خاطر موفقیت خیام در تعیین ضرایب بسط دو جملهای (بینوم نیوتن)که البته تا سده قبل نامکشوف مانده بود و به احترام سبقت وی بر اسحاق نیوتن در این زمینه در بسیاری از کتب دانشگاهی و مرجع این دو جملهایها «دو جملهای خیام-نیوتن» نامیده میشوند.